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Abstract – This paper demonstrates an asynchronous 
implementation of a FIFO based on 4 phase bundled data 
protocol, interfaced with an SRAM. Both FIFO and SRAM 
are modeled using VHDL and use the asynchronous 
handshaking principles for communication. Timing and power 
analysis for the design is also presented. The synthesis, 
simulation and analysis is done with the help of Xilinx ISE 
version 9.1i 
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I. INTRODUCTION 

Nowadays, asynchronous design methodologies are 
being increasingly favoured compared to synchronous ones 
primarily due to their low power consumption and high 
performance. They are immune to problems like worst case 
delays and clock skews making asynchronous designs more 
robust. 

 A variety of asynchronous design methodologies have 
been proposed in the past dating back to Huffman’s 
fundamental mode circuits in the 1950s which used the 
concept of flow tables and finite state machines to model 
synchronous circuits. However, they suffered from some 
serious limitations such as not allowing for concurrent input 
changes and being feasible for simple circuits only. This is 
because for more complex circuits, it is very cumbersome 
to formulate FSMs. Soon afterwards, Muller laid down the 
theoretical foundations of speed independent circuits but 
they were mainly concerned with autonomous circuits and 
lacked a general synthesis technique. With the advent of 
Muller C element, further techniques blossomed, most 
famous being Sutherland’s Turing award winning 
Micropipeline. It is considered as the most practical method 
for designing asynchronous circuits. As mentioned in [7], 
other designs include using counters as shown in [2] which 
eliminate data movement at the cost of increased 
complexity. Similarly, in [4] and [5], token passing is used 
in which data can be transmitted or received only when the 
particular entity has a token, thereby eliminating latency.  

For asynchronous designs to develop further, it is 
imperative that the different modules of an asynchronous 
system are able to communicate with each other smoothly 
and without unnecessary delays. Working along these lines, 
this paper attempts to design and analyse a system 
comprising of a FIFO and an SRAM. Since memory forms 
an integral part of all computing systems, efficient 
interaction between these 2 modules will go a long way in 
ensuring success of an asynchronous digital system as a 
whole.  

II. 4 PHASE BUNDLED DATA PROTOCOL  

 As the name suggests, ‘4 phase’ refers to the number of 
steps involved in the communication through this protocol 
and ‘bundled data’ refers to the fact that separate ‘request’ 
and ‘acknowledge’ wires are bundled with the data signals. 
Fig 1 shows the waveforms using this protocol [8].  
 

 
 

Fig. 1 4 phase bundled data protocol 
 

The 4 steps involved, as explained in [6] are:  
 Step 1: The sender issues a valid data and sets 

request high. 

 Step 2: The receiver receives the data and sets 
acknowledge high.  

 Step 3: The sender responds to this by taking 
request low.  

 Step 4: The receiver again responds by taking 
the acknowledge signal low, thereby 
completing the 4 phases.  
 

The next communication cycle can now commence. Note 
that the time period between the rising edges of request and 
acknowledge signals, is the working period in which data is 
propagated. Whereas, the time period between the falling 
edges of request and acknowledge signals is the resetting 
period in which data does not propagate. It simply ensures 
that the request and acknowledge signals are returned to 
their initial states before the next cycle starts. The 4 phase is 
one of the most commonly used protocols because of its 
simplicity. AMULET microprocessor, which is unique 
among ARM implementations for being an asynchronous 
microprocessor, uses the 4 phase bundled data protocol.   
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III. MICROPIPELINES 

As Sutherland has cogently explained in [1], a 
micropipeline is a powerful tool for asynchronous data 
communication. It consists of a string of Muller C elements 
along with latches. The Muller C elements are used to for 
the propagation of control signal and the latches are 
instrumental in data propagation. Before further discussion, 
an overview of the Muller C elements is necessary.  

 
A. Muller C Element 

When inputs to the Muller C element are the same, then 
its output equals that input. When inputs are different, there 
is no change in the output. Fig. 2 shows the symbol of a 
Muller C element and its truth table is given in Table I.  

 
Fig. 2 Muller C element 

 
     

TABLE I 
TRUTH TABLE OF MULLER C ELEMENT 

Input X Input Y Output Z 
0 0 0 
0 1 No change 
1 0 No  change 
1 1 1 

 
B. Latch 

The other component used in the micropipeline is the 
latch used to store data. As shown in Fig. 3, it consists of a 
signal Cap which is used to capture the incoming data. The 
signal Cap_d, short for capture done, is used to denote 
completion of this capture.  

 
Fig. 3 Latch used in micropipeline 

C.  4 Phase Micropipeline Structure 
Using the 2 components discussed above, a 4 phase 

micropipeline can be constructed as shown in Fig. 4. Here, 
a 4 stage pipeline is shown with bubbled inputs to the 
Muller C element denoting inversion. Since propagation 
delay of the latch is greater than that of the Muller C 
elements, a delay has to be introduced in the path of the 
request signals in order to ensure proper synchronization 
between data and request signals. This delay is 
implemented using buffers having propagation delay 
comparable to that of the latches. This is because Muller C 
elements have negligible delay.  

 
Fig. 4 4 phase asynchronous pipeline 

 
On initialization, all control signals are low and all 

latches are transparent. When valid data is present on Din, 
the request signal Rin is set which further makes the output 
of the Muller C high as both of its inputs become 1. This in 
turn sets the Cap signal thereby storing the data present in 
Din in the latch. Thereafter, Cap_d goes high to show that 
the latching is completed. The signal Cap_d is further 
propagated to the acknowledge signal Ain which is sent 
back to the sender denoting that the data has been received 
and the reset phase of the 4 phase protocol can start.  

Moreover, Cap_d is also connected to the input of the 
Muller C of the second stage. This triggers the capture 
signal of the second stage high and the data output from the 
previous stage is latched into it. Again, the Cap_d signal 
goes high and will be forwarded to the Muller C elements 
of both the previous and the next stages. On one hand, it is 
sent to the positive input of the Muller C of the next stage 
thereby triggering data propagation in the third stage. On 
the other hand, it is sent to the negative input of Muller C 
element of the previous stage effectively giving 0 as the 
input to the Muller C. This matches with the Rin signal 
going low and hence marks the reset phase of the protocol. 
Now since both the inputs of the Muller C become 0, it 
gives 0 as the output which makes Ain low after resetting 
both Cap and Cap_d signals. This action completes the 4 
phase protocol.  

In this way, control and data signals are propagated 
through each stage of the pipeline strictly adhering to the 4 
phase bundled data protocol. Finally, at the last stage, the 
request signal is sent out from the pipeline as Rout which 
can be used as the input control signal for the next module 
to send output data Dout from the pipeline to that module. 
Similarly, an acknowledge signal from the next module is 
input to the pipeline in the form of Aout after receiving the 
data. It is important to note that because of the reset phase 
of the 4 phase micropipeline, it is impossible to store data in 
the adjacent latches. Data is always held in alternate latches. 
Therefore, the number of latches used is twice the depth of 
the pipeline.  

IV. VHDL MODELS  

Models of asynchronous FIFO and an asynchronous SRAM 
have been designed and synthesized using VHDL for 
Spartan 3 FPGA using Xilinx ISE, version 9.1i.   
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A. Asynchronous FIFO 
Using the concept of micropipelines explained in the 

previous section, an asynchronous FIFO has been created. 
This model of FIFO holds 15 bit wide data and has a depth 
of 4, which means it has 8 stages. A 15 bit data path may 
seem unconventional, but it is necessary as the control 
signals of SRAM are multiplexed with this data. Fig. 5 
shows the interface signals of FIFO in which input ports are 
shown to the left and output ports to the right. Fig. 6 shows 
the block diagram giving its structural details.  

Ports Rin, Ain, Rout and Aout perform the same 
functions as explained in the 4 phase micropipeline. The 
FIFO has added functionality through the ports Rst, Full, 
Empty, Overflow and Underflow. The FIFO is full when 
alternate latches hold data. Therefore, when capture signals 
to the alternate latches and inversion of the capture signals 
of the remaining latches give ‘1’ as the output when passed 
through a multiple AND gate, it means that the FIFO is full.  

Moreover, the FIFO is empty when all the latches are 
transparent. Therefore, if all capture signals give ‘1’ as the 
output when passed through a NOR gate, it implies that the 
FIFO is empty.    

 
Fig. 5 Asynchronous FIFO: interface signals 

 

The Rin signal going high if the FIFO is full will result 
in an overflow. Conversely, the Aout signal going high if 
the FIFO is empty will result in underflow. On making Rst 
high, the FIFO is reset. Hence, it will go back to its initial 
state with all latches transparent and all control signals low. 
 
B. Asynchronous SRAM   

The asynchronous SRAM presented in this paper has a 
capacity of 32 locations of 8 bits each. Fig. 7 shows its 
interface signals.  

 
Fig. 7 Asynchronous SRAM: interface signals 

 
The CE signal refers to Chip Enable and the SRAM 
function only when this signal is made high. When the 
request Rin goes high, the operation of the SRAM depends 
upon the W/R pin. If W/R is high, the 8 bit input data is 
sent through the Data_in (7:0) and stored in the addresses 
corresponding to the values given to the Address (4:0).  

Whereas, if the Write/Read signal is low when the Req 
signal goes high, data will be read from SRAM and sent out 
through Data_out (7:0).  

The Ack signal goes high in response to request for both 
read and write operations.  

 
 

Fig. 6 Asynchronous FIFO block diagram 
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Fig. 8 FIFO-SRAM interfacing NGR schematic 

 

 
Fig. 9 FIFO-SRAM interfacing block diagram 

 

C. FIFO-SRAM Interfacing 

Now the FIFO and SRAM are interfaced together to 
form a single unit which is assumed to be receiving signals 
from a controller. Fig. 8 shows the NGR schematic 
obtained during VHDL synthesis and depicts the ports of 
the entire system. Fig. 9 shows the block diagram of the 
data and handshaking signals. The double arrows show the 
data flow and single arrows show the control flow. 
The control signals and addresses provided to the SRAM 
are multiplexed in the data input to the FIFO. In the 15 bit 
data, Din (14:0),  

 Din (14:7) is the actual 8 bit data.  
 Din (6:2) denotes the address values needed for 

storage in the SRAM 
 Din (1) specifies the W/R pin and 
 Din (0) denotes the CE pin.  

 
A step by step flow of data and control signals is outlined 
for this system. 

 Step 1: After system reset, all control signals are 
low and all latches empty.  

 Step 2: When valid 15 bit data is available, the 
Req_in is set which is connected to the input Rin 
of the FIFO making the latches in it ready for data 
capture. Rin propagates through each stage of the 
FIFO sequentially till it reaches the last stage.  

 Step 3: The data is captured in the first latch of the 
FIFO which further travels through each 

successive stage in accordance with setting up of 
the request signal of that particular stage, as 
explained in the 4 phase micropipeline description.  

 Step 4: Simultaneously, an acknowledge Ain is 
sent back to the controller from the FIFO 
indicating that it has received the data. This Ain is 
connected to acknowledge Ack_out of the 2 
module system. 

 Step 5: When data is available at the last stage of 
FIFO, request signal Rout is sent out from the 
FIFO and acts as the input request to the SRAM 
named Req. 

 Step 6: The SRAM receives the request and the 15 
bit multiplexed data is input to it. If CE is high, 
and the W/R signal coming from the multiplexed 
data is high, the 8 bit data is written into the 
SRAM corresponding to the address values being 
input. If the W/R signal is low, the 8 bit data 
already stored in SRAM will be read and the data 
will be sent out from the SRAM in the form of 
Dout. 

 Step 7: The acknowledge Ack of the SRAM goes 
high after performing either a write or a read. This 
signal is sent back to the FIFO in the form of Aout 
which shows that the SRAM is ready for the next 
input from the FIFO.   

 Step 8: This marks the end of the communication 
cycle and the next cycle can now begin. 
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V. SIMULATION RESULTS 

The analysis involves calculating control delays and power 
consumed for the 15 x 4 FIFO interfaced with 32 x 8 
SRAM using VHDL simulations.    
A. Control Delays 

Table II shows the control delays for the FIFO.  
 

TABLE II 
CONTROL DELAYS FOR FIFO 

Path  Delay(ns) 
Rin ↑ to Rout ↑ 49.7 
Rin ↑ to Ain ↑ 11.4 
Rin ↓ to Ain ↓ 9.3 

Aout ↑ to Ain ↓  9.8 
Aout ↑ to Rout ↓ 33.1 
Aout ↓ to Rout ↑ 9.4 
Total Cycle Time 122.7 

 
   It can be seen that the total cycle time for the FIFO 

comes out to be 122.7 ns. It should be noted that that above 
value shows the delay of the entire 8 stage FIFO. Delay of a 
single stage will be much less.  

 Total delay for the whole system from data going into 
Req_in to acknowledge coming out of Ack_out in Fig. 9, 
after travelling through both FIFO and SRAM is 58.1ns.  

 
B. Power Analysis 

The power analysis for the design is performed using 
Xpower Estimator which is a tool present in Xilinx ISE. 
Table III shows the power consumed by this design.  
 

TABLE III 
POWER CONSUMED 

Power  Value (mW) 
Dynamic 37 
Quiescent 4 

Total 41 
 
An ambient temperature of 25° C is assumed for the 
analysis. As expected, the quiescent power is much lower 
than dynamic power which is the case for most circuits. The 
power consumed is less than comparable synchronous 
circuits. 

VI.  CONCLUSIONS 

The results show the importance of using asynchronous 
systems in memory designs, specifically the FIFO-SRAM 
block which is essential for storing data. The use of a 4 
phase micropipeline ensures fast and power efficient 
transfer of data and control signals from FIFO to SRAM 
which results in the development of high performance 
systems immune to clock skews.  

The smooth functioning of this asynchronous FIFO-
SRAM module reiterates the fact that we are steadily 
moving towards a future where asynchronous circuits will 
be ubiquitous. 
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