
A Synthesizable RTL Design of Asynchronous
FIFO Interfaced with SRAM

Mansi Jhamb , Sugam Kapoor

USIT, GGSIPU

Sector 16-C, Dwarka, New Delhi-110078, India

Abstract – This paper demonstrates an asynchronous
implementation of a FIFO based on 4 phase bundled data
protocol, interfaced with an SRAM. Both FIFO and SRAM
are modeled using VHDL and use the asynchronous
handshaking principles for communication. Timing and power
analysis for the design is also presented. The synthesis,
simulation and analysis is done with the help of Xilinx ISE
version 9.1i
Keywords— asynchronous, FIFO, SRAM, interfacing, VHDL,
delays, power

I. INTRODUCTION

Nowadays, asynchronous design methodologies are
being increasingly favoured compared to synchronous ones
primarily due to their low power consumption and high
performance. They are immune to problems like worst case
delays and clock skews making asynchronous designs more
robust.

 A variety of asynchronous design methodologies have
been proposed in the past dating back to Huffman’s
fundamental mode circuits in the 1950s which used the
concept of flow tables and finite state machines to model
synchronous circuits. However, they suffered from some
serious limitations such as not allowing for concurrent input
changes and being feasible for simple circuits only. This is
because for more complex circuits, it is very cumbersome
to formulate FSMs. Soon afterwards, Muller laid down the
theoretical foundations of speed independent circuits but
they were mainly concerned with autonomous circuits and
lacked a general synthesis technique. With the advent of
Muller C element, further techniques blossomed, most
famous being Sutherland’s Turing award winning
Micropipeline. It is considered as the most practical method
for designing asynchronous circuits. As mentioned in [7],
other designs include using counters as shown in [2] which
eliminate data movement at the cost of increased
complexity. Similarly, in [4] and [5], token passing is used
in which data can be transmitted or received only when the
particular entity has a token, thereby eliminating latency.

For asynchronous designs to develop further, it is
imperative that the different modules of an asynchronous
system are able to communicate with each other smoothly
and without unnecessary delays. Working along these lines,
this paper attempts to design and analyse a system
comprising of a FIFO and an SRAM. Since memory forms
an integral part of all computing systems, efficient
interaction between these 2 modules will go a long way in
ensuring success of an asynchronous digital system as a
whole.

II. 4 PHASE BUNDLED DATA PROTOCOL

 As the name suggests, ‘4 phase’ refers to the number of
steps involved in the communication through this protocol
and ‘bundled data’ refers to the fact that separate ‘request’
and ‘acknowledge’ wires are bundled with the data signals.
Fig 1 shows the waveforms using this protocol [8].

Fig. 1 4 phase bundled data protocol

The 4 steps involved, as explained in [6] are:
 Step 1: The sender issues a valid data and sets

request high.

 Step 2: The receiver receives the data and sets
acknowledge high.

 Step 3: The sender responds to this by taking
request low.

 Step 4: The receiver again responds by taking
the acknowledge signal low, thereby
completing the 4 phases.

The next communication cycle can now commence. Note
that the time period between the rising edges of request and
acknowledge signals, is the working period in which data is
propagated. Whereas, the time period between the falling
edges of request and acknowledge signals is the resetting
period in which data does not propagate. It simply ensures
that the request and acknowledge signals are returned to
their initial states before the next cycle starts. The 4 phase is
one of the most commonly used protocols because of its
simplicity. AMULET microprocessor, which is unique
among ARM implementations for being an asynchronous
microprocessor, uses the 4 phase bundled data protocol.

Mansi Jhamb et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2033-2037

www.ijcsit.com 2033

III. MICROPIPELINES

As Sutherland has cogently explained in [1], a
micropipeline is a powerful tool for asynchronous data
communication. It consists of a string of Muller C elements
along with latches. The Muller C elements are used to for
the propagation of control signal and the latches are
instrumental in data propagation. Before further discussion,
an overview of the Muller C elements is necessary.

A. Muller C Element

When inputs to the Muller C element are the same, then
its output equals that input. When inputs are different, there
is no change in the output. Fig. 2 shows the symbol of a
Muller C element and its truth table is given in Table I.

Fig. 2 Muller C element

TABLE I
TRUTH TABLE OF MULLER C ELEMENT

Input X Input Y Output Z
0 0 0
0 1 No change
1 0 No change
1 1 1

B. Latch

The other component used in the micropipeline is the
latch used to store data. As shown in Fig. 3, it consists of a
signal Cap which is used to capture the incoming data. The
signal Cap_d, short for capture done, is used to denote
completion of this capture.

Fig. 3 Latch used in micropipeline

C. 4 Phase Micropipeline Structure
Using the 2 components discussed above, a 4 phase

micropipeline can be constructed as shown in Fig. 4. Here,
a 4 stage pipeline is shown with bubbled inputs to the
Muller C element denoting inversion. Since propagation
delay of the latch is greater than that of the Muller C
elements, a delay has to be introduced in the path of the
request signals in order to ensure proper synchronization
between data and request signals. This delay is
implemented using buffers having propagation delay
comparable to that of the latches. This is because Muller C
elements have negligible delay.

Fig. 4 4 phase asynchronous pipeline

On initialization, all control signals are low and all

latches are transparent. When valid data is present on Din,
the request signal Rin is set which further makes the output
of the Muller C high as both of its inputs become 1. This in
turn sets the Cap signal thereby storing the data present in
Din in the latch. Thereafter, Cap_d goes high to show that
the latching is completed. The signal Cap_d is further
propagated to the acknowledge signal Ain which is sent
back to the sender denoting that the data has been received
and the reset phase of the 4 phase protocol can start.

Moreover, Cap_d is also connected to the input of the
Muller C of the second stage. This triggers the capture
signal of the second stage high and the data output from the
previous stage is latched into it. Again, the Cap_d signal
goes high and will be forwarded to the Muller C elements
of both the previous and the next stages. On one hand, it is
sent to the positive input of the Muller C of the next stage
thereby triggering data propagation in the third stage. On
the other hand, it is sent to the negative input of Muller C
element of the previous stage effectively giving 0 as the
input to the Muller C. This matches with the Rin signal
going low and hence marks the reset phase of the protocol.
Now since both the inputs of the Muller C become 0, it
gives 0 as the output which makes Ain low after resetting
both Cap and Cap_d signals. This action completes the 4
phase protocol.

In this way, control and data signals are propagated
through each stage of the pipeline strictly adhering to the 4
phase bundled data protocol. Finally, at the last stage, the
request signal is sent out from the pipeline as Rout which
can be used as the input control signal for the next module
to send output data Dout from the pipeline to that module.
Similarly, an acknowledge signal from the next module is
input to the pipeline in the form of Aout after receiving the
data. It is important to note that because of the reset phase
of the 4 phase micropipeline, it is impossible to store data in
the adjacent latches. Data is always held in alternate latches.
Therefore, the number of latches used is twice the depth of
the pipeline.

IV. VHDL MODELS

Models of asynchronous FIFO and an asynchronous SRAM
have been designed and synthesized using VHDL for
Spartan 3 FPGA using Xilinx ISE, version 9.1i.

Mansi Jhamb et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2033-2037

www.ijcsit.com 2034

A. Asynchronous FIFO
Using the concept of micropipelines explained in the

previous section, an asynchronous FIFO has been created.
This model of FIFO holds 15 bit wide data and has a depth
of 4, which means it has 8 stages. A 15 bit data path may
seem unconventional, but it is necessary as the control
signals of SRAM are multiplexed with this data. Fig. 5
shows the interface signals of FIFO in which input ports are
shown to the left and output ports to the right. Fig. 6 shows
the block diagram giving its structural details.

Ports Rin, Ain, Rout and Aout perform the same
functions as explained in the 4 phase micropipeline. The
FIFO has added functionality through the ports Rst, Full,
Empty, Overflow and Underflow. The FIFO is full when
alternate latches hold data. Therefore, when capture signals
to the alternate latches and inversion of the capture signals
of the remaining latches give ‘1’ as the output when passed
through a multiple AND gate, it means that the FIFO is full.

Moreover, the FIFO is empty when all the latches are
transparent. Therefore, if all capture signals give ‘1’ as the
output when passed through a NOR gate, it implies that the
FIFO is empty.

Fig. 5 Asynchronous FIFO: interface signals

The Rin signal going high if the FIFO is full will result
in an overflow. Conversely, the Aout signal going high if
the FIFO is empty will result in underflow. On making Rst
high, the FIFO is reset. Hence, it will go back to its initial
state with all latches transparent and all control signals low.

B. Asynchronous SRAM

The asynchronous SRAM presented in this paper has a
capacity of 32 locations of 8 bits each. Fig. 7 shows its
interface signals.

Fig. 7 Asynchronous SRAM: interface signals

The CE signal refers to Chip Enable and the SRAM
function only when this signal is made high. When the
request Rin goes high, the operation of the SRAM depends
upon the W/R pin. If W/R is high, the 8 bit input data is
sent through the Data_in (7:0) and stored in the addresses
corresponding to the values given to the Address (4:0).

Whereas, if the Write/Read signal is low when the Req
signal goes high, data will be read from SRAM and sent out
through Data_out (7:0).

The Ack signal goes high in response to request for both
read and write operations.

Fig. 6 Asynchronous FIFO block diagram

Mansi Jhamb et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2033-2037

www.ijcsit.com 2035

Fig. 8 FIFO-SRAM interfacing NGR schematic

Fig. 9 FIFO-SRAM interfacing block diagram

C. FIFO-SRAM Interfacing

Now the FIFO and SRAM are interfaced together to
form a single unit which is assumed to be receiving signals
from a controller. Fig. 8 shows the NGR schematic
obtained during VHDL synthesis and depicts the ports of
the entire system. Fig. 9 shows the block diagram of the
data and handshaking signals. The double arrows show the
data flow and single arrows show the control flow.
The control signals and addresses provided to the SRAM
are multiplexed in the data input to the FIFO. In the 15 bit
data, Din (14:0),

 Din (14:7) is the actual 8 bit data.
 Din (6:2) denotes the address values needed for

storage in the SRAM
 Din (1) specifies the W/R pin and
 Din (0) denotes the CE pin.

A step by step flow of data and control signals is outlined
for this system.

 Step 1: After system reset, all control signals are
low and all latches empty.

 Step 2: When valid 15 bit data is available, the
Req_in is set which is connected to the input Rin
of the FIFO making the latches in it ready for data
capture. Rin propagates through each stage of the
FIFO sequentially till it reaches the last stage.

 Step 3: The data is captured in the first latch of the
FIFO which further travels through each

successive stage in accordance with setting up of
the request signal of that particular stage, as
explained in the 4 phase micropipeline description.

 Step 4: Simultaneously, an acknowledge Ain is
sent back to the controller from the FIFO
indicating that it has received the data. This Ain is
connected to acknowledge Ack_out of the 2
module system.

 Step 5: When data is available at the last stage of
FIFO, request signal Rout is sent out from the
FIFO and acts as the input request to the SRAM
named Req.

 Step 6: The SRAM receives the request and the 15
bit multiplexed data is input to it. If CE is high,
and the W/R signal coming from the multiplexed
data is high, the 8 bit data is written into the
SRAM corresponding to the address values being
input. If the W/R signal is low, the 8 bit data
already stored in SRAM will be read and the data
will be sent out from the SRAM in the form of
Dout.

 Step 7: The acknowledge Ack of the SRAM goes
high after performing either a write or a read. This
signal is sent back to the FIFO in the form of Aout
which shows that the SRAM is ready for the next
input from the FIFO.

 Step 8: This marks the end of the communication
cycle and the next cycle can now begin.

Mansi Jhamb et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2033-2037

www.ijcsit.com 2036

V. SIMULATION RESULTS

The analysis involves calculating control delays and power
consumed for the 15 x 4 FIFO interfaced with 32 x 8
SRAM using VHDL simulations.
A. Control Delays

Table II shows the control delays for the FIFO.

TABLE II
CONTROL DELAYS FOR FIFO

Path Delay(ns)
Rin ↑ to Rout ↑ 49.7
Rin ↑ to Ain ↑ 11.4
Rin ↓ to Ain ↓ 9.3

Aout ↑ to Ain ↓ 9.8
Aout ↑ to Rout ↓ 33.1
Aout ↓ to Rout ↑ 9.4
Total Cycle Time 122.7

 It can be seen that the total cycle time for the FIFO

comes out to be 122.7 ns. It should be noted that that above
value shows the delay of the entire 8 stage FIFO. Delay of a
single stage will be much less.

 Total delay for the whole system from data going into
Req_in to acknowledge coming out of Ack_out in Fig. 9,
after travelling through both FIFO and SRAM is 58.1ns.

B. Power Analysis

The power analysis for the design is performed using
Xpower Estimator which is a tool present in Xilinx ISE.
Table III shows the power consumed by this design.

TABLE III
POWER CONSUMED

Power Value (mW)
Dynamic 37
Quiescent 4

Total 41

An ambient temperature of 25° C is assumed for the
analysis. As expected, the quiescent power is much lower
than dynamic power which is the case for most circuits. The
power consumed is less than comparable synchronous
circuits.

VI. CONCLUSIONS

The results show the importance of using asynchronous
systems in memory designs, specifically the FIFO-SRAM
block which is essential for storing data. The use of a 4
phase micropipeline ensures fast and power efficient
transfer of data and control signals from FIFO to SRAM
which results in the development of high performance
systems immune to clock skews.

The smooth functioning of this asynchronous FIFO-
SRAM module reiterates the fact that we are steadily
moving towards a future where asynchronous circuits will
be ubiquitous.

REFERENCES
[1] I. E. Sutherland. Micropipelines. Communications of the ACM,

32(6):720–738, ISSN 0001-0782, 1989.
[2] A.V. Yakovlev, A.M. Koelmans, L. Lavagno,”High- Level Modeling

and Design of Asynchronous Interface Logic”, IEEE Design and
Test of computers, Spring 1995.

[3] Paul Day, J.Viv.Woods, "Investigation into Micropipeline Latch
Design Styles" published in Very Large Scale Integration (VLSI)
Systems, IEEE Transactions (Volume: 3, Issue: 2), ISSN :1063-8210,

 June 1995
[4] K.K. Yi, “The Design of a Self-Timed Low Power FIFO Using a

Word-Slice Structure”, M.Phil Thesis, University of Manchester,
September 1998.

[5] Chelceq T.; Nowick, S.M.; “Low-latency asynchronous FIFO’s using
token rings”; Advanced Research in Asynchronous Circuits and
Systems, 2000. (ASnVC 2000) Proceedings. Sixth International
Symposium, 2-6 April 2000 Pages: 210 - 220

[6] J. Sparso, S. Furber, “Principles of Asynchronous Circuit
Design: A Systems Perspective”. European Low-Power
Initiative for Electronic System Design, Kluwer Academic
Publishers, ISBN: 0-7923-7613-7, Jan 2002.

[7] Xin Wang, Tapani Ahonen, Jari Nurmi , “A synthesizable RTL
design of asynchronous FIFO”. System-On-chip Proceedings,
November 2004

[8] Chammika Mannakkara, “Asynchronous Pipeline Controller Based
on Early Acknowledgement Protocol”, September 2010

Mansi Jhamb et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2033-2037

www.ijcsit.com 2037

